Zero-lag long-range synchronization via dynamical relaying.
نویسندگان
چکیده
We show that isochronous synchronization between two delay-coupled oscillators can be achieved by relaying the dynamics via a third mediating element, which surprisingly lags behind the synchronized outer elements. The zero-lag synchronization thus obtained is robust over a considerable parameter range. We substantiate our claims with experimental and numerical evidence of such synchronization solutions in a chain of three coupled semiconductor lasers with long interelement coupling delays. The generality of the mechanism is validated in a neuronal model with the same coupling architecture. Thus, our results show that zero-lag synchronized chaotic dynamical states can occur over long distances through relaying, without restriction by the amount of delay.
منابع مشابه
Zero-Lag Long Range Synchronization of Neurons Is Enhanced by Dynamical Relaying
How can two distant neural assemblies synchronize their firings at zero-lag even in the presence of non-negligible delays in the transfer of information between them? Here we propose a simple network module that naturally accounts for zero-lag neural synchronization for a wide range of temporal delays. In particular, we demonstrate that isochronous (without lag) millisecond precise synchronizat...
متن کاملTheta Band Zero-Lag Long-Range Cortical Synchronization via Hippocampal Dynamical Relaying
Growing evidence suggests that synchronization among distributed neuronal networks underlie functional integration in the brain. Neural synchronization is typically revealed by a consistent phase delay between neural responses generated in two separated sources. But the influence of a third neuronal assembly in that synchrony pattern remains largely unexplored. We investigate here the potential...
متن کاملMechanisms of Zero-Lag Synchronization in Cortical Motifs
Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying"--a mechanism that relies on a specific ne...
متن کاملDynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays.
Multielectrode recordings have revealed zero time lag synchronization among remote cerebral cortical areas. However, the axonal conduction delays among such distant regions can amount to several tens of milliseconds. It is still unclear which mechanism is giving rise to isochronous discharge of widely distributed neurons, despite such latencies. Here, we investigate the synchronization properti...
متن کاملWhen Long-Range Zero-Lag Synchronization is Feasible in Cortical Networks
Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14-30 and 40-80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2006